2D and 3D Geometry Formulas

ShapeFormula
Input: Sides Lengths of Right Triangle formula to find the unknown side of a right triangle
Pythagorean Theorem Formula $c^2 = a^2 + b^2$
Input: Two points $A(x_A,y_A)$ and $B(x_B,y_B)$ formula to find distance between 2 end-points
Length Between Two Points ${AB}=d(A,B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$
Input: Two points $A(x_A,y_A)$ and $B(x_B,y_B)$ formula to find midpoint between 2 end-points
Midpoint of Line Segment $M\Big(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2}\Big)$
Input: Three non-collinear points $A(x_A,y_A), B(x_B,y_B)$ and $C(x_C, y_C)$ formula to find midpoint of a Triangle
Centroid Triangle $C\Big(\frac{x_A+x_B+x_C}{3},\frac{y_A+y_B+y_C}{3}\Big)$
Input: Point $A(x_A,y_A)$ and line $(p):Ax+By+C=0$ formula to determine perpendicular length
Perpendicular Length $d(A,p)=\Big|\frac{Ax_A+By_B+C}{\sqrt{A^2+B^2}}\Big|$
Input: Point $A(x_A,y_A)$ and slope $m$ formula to find point slope form of a line
Point Slope Form $y-y_A=m(x-x_A)$
Input: Slope $m$ and intercept $b$ formula to find slope intercept form of a line
Slope Intercept Form $y=mx+b$
Input: Two points $A(x_A,y_A)$ and $B(x_B,y_B)$ formula to find the interpolated point of a line
Linear Interpolation $x_C=\frac{x_B(y_C-y_A)+x_A(y_B-y_C)}{y_B-y_A}$
$y_C=\frac{y_B(x_C-x_A)+y_A(x_B-x_C)}{x_B-x_A}$
Input: Three non-collinear points$A(x_A,y_A), B(x_B,y_B)$\ and $C(x_C, y_C)$ formula to find Triangle area by 3-coordinate points on XY plane
Area of Triangle $A=\frac 12[x_A(y_B-y_C)+x_B(y_C-y_A)+x_C(y_A-y_B)]$
Input: Radius $r$ or Diameter $D$ formula to find area, circumference and diameter of Circle
Circle Formulas $\mbox{Area}=r^2\pi$
$\mbox{Diameter}\; D=2r$
$\mbox{Circumference}=2r\pi$
Input: Radius $r$ and central angle $\alpha$ in degrees of circular sector formula to find circle sector area
Circular Sector Formula $\mbox{Area}=\frac{\pi r^2\alpha}{360^o}$
Input: Major radius $a$ and minor radius $ b $ of Ellipse formula to find area, perimeter and volume of Ellipse
Ellipse Formulas $\mbox{Area}=\pi ab$
$\mbox{Perimeter}=2\pi\sqrt{\frac{a^2+b^2}{2}}$
Input: Side $a$ or diagonal $d$ of Square formula to find the area, perimeter & diagonal length of a Square
Square Formulas $\mbox{Area}=a^2$
$\mbox{Perimeter}=4a$
$\mbox{Diagonal}\;d=\sqrt{2}a$
Input: Length $l$ and width $w$ of Rectangle formula to find the area, perimeter and diagonal length of a Rectangle
Rectangle Formulas $\mbox{Area}=\mbox{length}\times\mbox{width}$=lw
$\mbox{Perimeter}=2l+2w$
$\mbox{Diagonal}\;d=\sqrt{l^2+w^2}$
Input: Sides $a,b$ and $c$ of Triangle formula to find area & perimeter of Herons Triangle
Heron's Triangle Formula $\mbox{semiperimeter}\;s=\frac{a+b+c}{2}$
$\mbox{Area}=\sqrt{s(s-a)(s-b)(s-c)}$
Input: Base $c$ and its height $h$ of Triangle formula to find Triangle area
Triangle Formula $\mbox{Area}=\frac{ch}{2}$
Input: Bases $a$ and $b$ and height $h$ of Trapezoid formula to find the area of Trapezoid
Trapezoid Formula $\mbox{Area}=\frac{a+b}{2}h$
Input: Side $a$ and interior angle $\alpha$ or diagonals $d_1$ and $d_2$ of Rhombus formula to find area and perimeter of Rhombus
Rhombus Formulas $\mbox{Area}=a^2\sin\alpha$
$\mbox{Area (diagonal method)}=\frac{d_1d_2}{2}$
$\mbox{Perimeter}=4a$
Input: Base $a$ and its height $h$ of Parallelogram formula to find the area of Parallelogram
Parallelogram Formulas $\mbox{Area}=\mbox{base}\times\mbox{height}={ah}$
Input: Radius $r$ or diameter $D$ of sphere formula to find surface area and volume of Sphere
Sphere Formulas $\mbox{Surface Area}=4\pi r^2=\pi D^2$
$\mbox{Volume}=\frac 43\pi r^3=\frac 16\pi D^3$
Input: Radius $r$ of Hemisphere formula to find surface area and volume of Hemisphere
Hemisphere Formulas $\mbox{Surface Area}=3\pi r^2$
$\mbox{Volume}=\frac 23\pi r^3$
Input: Base radius $r$ and height $h$ of Cone formula to find area, volume and slanting height of Cone
Cone Formulas $\mbox{Surface Area}=\mbox{side area}+\mbox{base area}=\pi r(\sqrt{r^2+h^2}+r)$
$\mbox{Volume}=\frac 13\pi r^2h$
$\mbox{Slant Height}=\sqrt{r^2+h^2}$
Input: Base radius $r$ and height $h$ of Cylinder formula to find volume, base, total and lateral surface area of a cylinder
Cylinder Formulas $\mbox{Surface Area}=2\pi r(r+h)$
$\mbox{Volume}=\pi r^2h$
$\mbox{Base surface area}=\pi r^2$
$\mbox{Lateral surface area}=2\pi rh$
Input: Side $a$ of Cube formula to find volume of Cube
Cube Formulas $\mbox{Area}=6a^2$
$\mbox{Volume}=a^3$
Input: Base side and height of Pyramid formula to find base area, volume, surface area, lateral surface, slanting height of a Pyramid
Pyramid Formulas $\mbox{Surface Area}=\mbox{base area}+\frac 12\mbox{perimeter base}\times \mbox{slant height}$
$\mbox{Volume}=\frac 13\mbox{base area}\times\mbox{height}$
Input: Outer radius $R$, inner radius length $r$ and height $h$ of a Pipe formula to find the volume of a Pipe
Pipe Formulas $\mbox{Volume}=\pi(R^2-r^2) h$
Input: Base radius $r$ and height $h$ of Cylindrical Silo formula to find the volume of Cylindrical Silo
Cylindrical Silo Formulas $\mbox{Volume}=\pi r^2h+\frac{2\pi r^3}3$
Input: Length $l$, width $w$ and height $h$ of Cuboid formula to find the volume and surface area of Rectangular Prism or Cuboid
Rectangular Cuboid Formulas $\mbox{Surface Area}=2(lw+hl+hw)$
$\mbox{Volume}=lwh$
$\mbox{Diagonal}=\sqrt{l^2+w^2+h^2}$
$\mbox{Length around edges}=4(l+w+h)$
Input: Middle radius $D$ top or bottom radius $d$ and height $h$ of Barrel Cylinderical Barrel volume formula
Barrel Formulas $\mbox{Volume}=\frac{\pi h}{12} (2D^2+d^2)$

Geometry Formulas Reference

Geometry formulas reference is the collection equations for the study of 2 or 3 dimensional (2d or 3d) geometric shapes. This formulas cheatsheet deals with points, lines, planes, curves, angles, length, area, perimeter, volume, surfaces of different geometric shapes. This formulas cheatsheet is useful to know what are all the basic components used in the each functions of geometric functions.